Cargando…

Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments

Detalles Bibliográficos
Autores principales: Kamaric-Riis, S, Krogh, A
Lenguaje:eng
Publicado: 1995
Materias:
Acceso en línea:http://cds.cern.ch/record/282115
_version_ 1780888028894461952
author Kamaric-Riis, S
Krogh, A
author_facet Kamaric-Riis, S
Krogh, A
author_sort Kamaric-Riis, S
collection CERN
id cern-282115
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1995
record_format invenio
spelling cern-2821152019-09-30T06:29:59Zhttp://cds.cern.ch/record/282115engKamaric-Riis, SKrogh, AImproving prediction of protein secondary structure using structured neural networks and multiple sequence alignmentsCondensed MatterNORDITA-95-34-Soai:cds.cern.ch:2821151995-03-31
spellingShingle Condensed Matter
Kamaric-Riis, S
Krogh, A
Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title_full Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title_fullStr Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title_full_unstemmed Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title_short Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
title_sort improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
topic Condensed Matter
url http://cds.cern.ch/record/282115
work_keys_str_mv AT kamaricriiss improvingpredictionofproteinsecondarystructureusingstructuredneuralnetworksandmultiplesequencealignments
AT krogha improvingpredictionofproteinsecondarystructureusingstructuredneuralnetworksandmultiplesequencealignments