Cargando…
Quantum Machine Learning for HEP Detector Simulations
Quantum Machine Learning (qML) is one of the most promising and very intuitive applications on near-term quantum devices which possess the potential to combat computing resource challenges faster than traditional computers. Classical Machine Learning (ML) is taking up a significant role in particle...
Autores principales: | Rehm, Florian, Vallecorsa, Sofia, Borras, Kerstin, Krücker, Dirk |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2824092 |
Ejemplares similares
-
Quantum Angle Generator for Image Generation
por: Florian, Rehm, et al.
Publicado: (2022) -
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
On protocols for increasing the uniformity of random bits generated with noisy quantum computers
por: Combarro, Elías F, et al.
Publicado: (2021) -
Quantum Convolutional Circuits for Earth Observation Image Classification
por: Chang, Su Yeon, et al.
Publicado: (2022) -
International Conference on Quantum Technology for High-Energy Physics (QT4HEP22)
Publicado: (2022)