Cargando…
Quantum Machine Learning in High Energy Physics
Machine learning has been used in high energy physics for a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy in...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/abc17d http://cds.cern.ch/record/2824584 |
_version_ | 1780973716382941184 |
---|---|
author | Guan, Wen Perdue, Gabriel Pesah, Arthur Schuld, Maria Terashi, Koji Vallecorsa, Sofia Vlimant, Jean-Roch |
author_facet | Guan, Wen Perdue, Gabriel Pesah, Arthur Schuld, Maria Terashi, Koji Vallecorsa, Sofia Vlimant, Jean-Roch |
author_sort | Guan, Wen |
collection | CERN |
description | Machine learning has been used in high energy physics for a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to apply quantum machine learning to High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future applications. |
id | cern-2824584 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-28245842023-10-09T05:04:20Zdoi:10.1088/2632-2153/abc17dhttp://cds.cern.ch/record/2824584engGuan, WenPerdue, GabrielPesah, ArthurSchuld, MariaTerashi, KojiVallecorsa, SofiaVlimant, Jean-RochQuantum Machine Learning in High Energy Physicshep-phParticle Physics - Phenomenologyquant-phGeneral Theoretical PhysicsMachine learning has been used in high energy physics for a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to apply quantum machine learning to High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future applications.arXiv:2005.08582FERMILAB-PUB-20-184-QISoai:cds.cern.ch:28245842021 |
spellingShingle | hep-ph Particle Physics - Phenomenology quant-ph General Theoretical Physics Guan, Wen Perdue, Gabriel Pesah, Arthur Schuld, Maria Terashi, Koji Vallecorsa, Sofia Vlimant, Jean-Roch Quantum Machine Learning in High Energy Physics |
title | Quantum Machine Learning in High Energy Physics |
title_full | Quantum Machine Learning in High Energy Physics |
title_fullStr | Quantum Machine Learning in High Energy Physics |
title_full_unstemmed | Quantum Machine Learning in High Energy Physics |
title_short | Quantum Machine Learning in High Energy Physics |
title_sort | quantum machine learning in high energy physics |
topic | hep-ph Particle Physics - Phenomenology quant-ph General Theoretical Physics |
url | https://dx.doi.org/10.1088/2632-2153/abc17d http://cds.cern.ch/record/2824584 |
work_keys_str_mv | AT guanwen quantummachinelearninginhighenergyphysics AT perduegabriel quantummachinelearninginhighenergyphysics AT pesaharthur quantummachinelearninginhighenergyphysics AT schuldmaria quantummachinelearninginhighenergyphysics AT terashikoji quantummachinelearninginhighenergyphysics AT vallecorsasofia quantummachinelearninginhighenergyphysics AT vlimantjeanroch quantummachinelearninginhighenergyphysics |