Cargando…
Quantum Machine Learning in High Energy Physics
Machine learning has been used in high energy physics for a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy in...
Autores principales: | Guan, Wen, Perdue, Gabriel, Pesah, Arthur, Schuld, Maria, Terashi, Koji, Vallecorsa, Sofia, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/abc17d http://cds.cern.ch/record/2824584 |
Ejemplares similares
-
A Quantum Graph Neural Network Approach to Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Performance of Particle Tracking Using a Quantum Graph Neural Network
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Quantum phase detection generalization from marginal quantum neural network models
por: Monaco, Saverio, et al.
Publicado: (2022) -
Resource Saving via Ensemble Techniques for Quantum Neural Networks
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Snowmass White Paper: Quantum Computing Systems and Software for High-energy Physics Research
por: Humble, Travis S., et al.
Publicado: (2022)