Cargando…
Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function
Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, inclu...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/282463 |
Sumario: | Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\em organized collapse} of the coherent states down to a specific or {\em conscious state}. The whole process we estimate to take {\cal O}(1\,{\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. |
---|