Cargando…
Conditional Born machine for Monte Carlo event generation
Generative modeling is a promising task for near-term quantum devices, which can use the stochastic nature of quantum measurements as a random source. So-called Born machines are purely quantum models and promise to generate probability distributions in a quantum way, inaccessible to classical compu...
Autores principales: | Kiss, Oriel, Grossi, Michele, Kajomovitz, Enrique, Vallecorsa, Sofia |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevA.106.022612 http://cds.cern.ch/record/2825277 |
Ejemplares similares
-
Running the Dual-PQC GAN on noisy simulators and real quantum hardware
por: Chang, Su Yeon, et al.
Publicado: (2023) -
Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection
por: Grossi, Michele, et al.
Publicado: (2022) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)