Cargando…
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Experiment
The reconstruction and calibration of hadronic final states in the ATLAS detector present complex experimental challenges. For isolated pions in particular, classifying $\pi^0$ versus $\pi^{\pm}$ and calibrating pion energy deposits in the ATLAS calorimeters are key steps in the hadronic reconstruct...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2825379 |
Ejemplares similares
-
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Detector
por: Portillo Quintero, Dilia Maria
Publicado: (2022) -
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Detector
por: Portillo Quintero, Dilia Maria
Publicado: (2022) -
Deep Learning for Pion Identification and Energy Calibration with the ATLAS Detector
por: The ATLAS collaboration
Publicado: (2020) -
Physics Object Localization with Point Cloud Segmentation Networks
por: The ATLAS collaboration
Publicado: (2021) -
Reconstruction techniques in supersymmetry searches in the ATLAS experiment
por: ATLAS Collaboration
Publicado: (2018)