Cargando…
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
After LS3 the LHC will increase its instantaneous luminosity by a factor of 7, leading to the High Luminosity LHC (HL-LHC). At the HL-LHC, the number of proton-proton collisions in one bunch crossing (called pileup) will increase significantly, putting more stringent requirements on the LHC detector...
Autor principal: | Fritzsche, Nick |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2826542 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Fortin, Etienne Marie
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Voigt, Johann Christoph
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Berthold, Anne-Sophie
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Gutsche, Christian
Publicado: (2023)