Cargando…
Similarity hashing for charged particle tracking
The tracking of charged particles produced in high energy collisions is particularly challenging. The combinatorics approach currently used to track tens of thousands of particles becomes inadequate as the number of simultaneous collisions increase at the High Luminosity Large Hadron Collider (HLLHC...
Autores principales: | Amrouche, Sabrina, Golling, Tobias, Kiehn, Moritz, Plant, Claudia, Salzburger, Andreas |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/BigData47090.2019.9006316 http://cds.cern.ch/record/2827225 |
Ejemplares similares
-
Hashing and metric learning for charged particle tracking
por: Amrouche, Sabrina, et al.
Publicado: (2021) -
Hashing and similarity learning for tracking with the HL-LHC ATLAS detector
por: Kiehn, Moritz, et al.
Publicado: (2020) -
TrackML : a tracking Machine Learning challenge
por: Golling, Tobias, et al.
Publicado: (2019) -
TrackML: A High Energy Physics Particle Tracking Challenge
por: Calafiura, Polo, et al.
Publicado: (2018) -
The joys of hashing: hash table programming with C
por: Mailund, Thomas
Publicado: (2019)