Cargando…
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC Using Quantum Computer Simulators and Quantum Computer Hardware
Machine learning enjoys widespread success in High Energy Physics (HEP) analyses at LHC. However the ambitious HL-LHC program will require much more computing resources in the next two decades. Quantum computing may offer speed-up for HEP physics analyses at HL-LHC, and can be a new computational pa...
Autores principales: | Wu, Sau Lan, Chan, Jay, Cheng, Alkaid, Guan, Wen, Sun, Shaojun, Wang, Alex, Zhang, Rui, Zhou, Chen, Livny, Miron, Di Meglio, Alberto, Li, Andy, Lykken, Joseph, Spentzouris, Panagiotis, Yen-Chi Chen, Samuel, Yoo, Shinjae, Wei, Tzu-Chieh, Lougovski, Pavel, Padhi, Sanjay, Severini, Simone, Walker, Dewayne |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.398.0842 http://cds.cern.ch/record/2827277 |
Ejemplares similares
-
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
por: Chan, Jay, et al.
Publicado: (2021) -
Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits
por: Wu, Sau Lan, et al.
Publicado: (2020) -
A biological sequence comparison algorithm using quantum computers
por: Kösoglu-Kind, Büsra, et al.
Publicado: (2023) -
CERN Quantum Technology Initiative Strategy and Roadmap
por: Di Meglio, Alberto, et al.
Publicado: (2021) -
Towards a European quantum network
por: Ribezzo, D, et al.
Publicado: (2022)