Cargando…
Autoencoders for anomaly detection at LHCb
In the following work, a Machine Learning tool that differentiates typical Standard Model events from Beyond Standard Model was developed. The algorithm, called Autoencoder, was able to successfully separate a specific low mass model of dark shower topology (soft bomb events) from Standard Model, sh...
Autor principal: | Radziunas Salinas, Yago |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2833850 |
Ejemplares similares
-
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Flavour anomalies at LHCb
por: Chatzikonstantinidis, Georgios
Publicado: (2018) -
Pentaquarks and possible anomalies at LHCb
por: Lafferty, G
Publicado: (2016) -
B decay anomalies at LHCb
por: Oyanguren, Arantza
Publicado: (2018) -
Flavour anomalies in rare decays at LHCb
por: Capriotti, Lorenzo
Publicado: (2019)