Cargando…
Embedded Neural Networks on FPGAs for Real-Time Computation of the Energy Deposited in the ATLAS Liquid Argon Calorimeter
At the HL-LHC, the number of proton-proton collisions in one bunch-crossing (called pileup) increases significantly, putting more stringent requirements on the LHC detectors electronics and real-time data-processing capabilities. The ATLAS LAr calorimeter measures with an excellent resolution the en...
Autor principal: | Aad, Georges |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2834032 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Fortin, Etienne Marie
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Voigt, Johann Christoph
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Berthold, Anne-Sophie
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Gutsche, Christian
Publicado: (2023)