Cargando…
Towards automatic setup of 18 MeV electron beamline using machine learning
To improve the performance-critical stability and brightness of the electron bunch at injection into the proton-driven plasma wakefield at the AWAKE CERN experiment, automation approaches based on unsupervised machine learning (ML) were developed and deployed. Numerical optimisers were tested togeth...
Autores principales: | Velotti, Francesco Maria, Goddard, Brennan, Kain, Verena, Ramjiawan, Rebecca, Della Porta, Giovanni Zevi, Hirlaender, Simon |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/acce21 http://cds.cern.ch/record/2834558 |
Ejemplares similares
-
Online Multi-Objective Particle Accelerator Optimization of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control
por: Scheinker, Alexander, et al.
Publicado: (2020) -
Design of the AWAKE Run 2c transfer lines using numerical optimizers
por: Ramjiawan, Rebecca, et al.
Publicado: (2022) -
An $ep$ collider based on proton-driven plasma wakefield acceleration
por: Wing, M., et al.
Publicado: (2014) -
Central Diffraction at the LHCb
por: Lamsa, Jerry W., et al.
Publicado: (2009) -
Wakefield damping for the CLIC crab cavity
por: Ambattu, Praveen Kumar, et al.
Publicado: (2009)