Cargando…
Simulating the LHCb hadron calorimeter with generative adversarial networks
Generative adversarial networks are known as a tool for fast simulation of data. Our aim is to research and develop a physical application of these tools by simulating LHCb hadron calorimeter (HCAL) in order to speed up the Monte Carlo datasets production.
Autores principales: | Lancierini, D, Owen, P, Serra, N |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1393/ncc/i2019-19197-3 http://cds.cern.ch/record/2834891 |
Ejemplares similares
-
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Generative Adversarial Networks for LHCb Fast Simulation
por: Ratnikov, Fedor
Publicado: (2020) -
Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks
por: The ATLAS collaboration
Publicado: (2020) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018)