Cargando…
Design, Construction and Commissioning of a Technological Prototype of a Highly Granular SiPM-on-tile Scintillator-Steel Hadronic Calorimeter
The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a d...
Lenguaje: | eng |
---|---|
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2835469 |
Sumario: | The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of $72 \times 72\,{\rm cm}^{2}$ and a tile size of $3 \times 3\,{\rm cm}^{2}$. With $38$ active layers, the prototype has nearly $22,000$ readout channels, and its total thickness amounts to $4.4$ nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about $1\,{\rm ns}$. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented. |
---|