Cargando…

Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster

The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of quantum many-body systems. A key component of the algorithm and an active research area is the construction of a parametrized trial wave function—a so-called variational ansatz. The wave function...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiss, Oriel, Grossi, Michele, Lougovski, Pavel, Sanchez, Federico, Vallecorsa, Sofia, Papenbrock, Thomas
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevC.106.034325
http://cds.cern.ch/record/2836035
_version_ 1780975719061389312
author Kiss, Oriel
Grossi, Michele
Lougovski, Pavel
Sanchez, Federico
Vallecorsa, Sofia
Papenbrock, Thomas
author_facet Kiss, Oriel
Grossi, Michele
Lougovski, Pavel
Sanchez, Federico
Vallecorsa, Sofia
Papenbrock, Thomas
author_sort Kiss, Oriel
collection CERN
description The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of quantum many-body systems. A key component of the algorithm and an active research area is the construction of a parametrized trial wave function—a so-called variational ansatz. The wave function parametrization should be expressive enough, i.e., represent the true eigenstate of a quantum system for some choice of parameter values. On the other hand, it should be trainable, i.e., the number of parameters should not grow exponentially with the size of the system. Here, we apply VQE to the problem of finding ground and excited state energies of the odd-odd nucleus <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math>. We study the effects of ordering fermionic excitation operators in the unitary coupled clusters ansatz on the VQE algorithm convergence by using only operators preserving the <math><msub><mi>J</mi><mi>z</mi></msub></math> quantum number. The accuracy is improved by two orders of magnitude in the case of descending order. We first compute optimal ansatz parameter values using a classical state-vector simulator with arbitrary measurement accuracy and then use those values to evaluate energy eigenstates of <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math> on a superconducting quantum chip from IBM. We post-process the results by using error mitigation techniques and are able to reproduce the exact energy with an error of <math><mrow><mn>3.8</mn><mo>%</mo></mrow></math> and <math><mrow><mn>0.1</mn><mo>%</mo></mrow></math> for the ground state and for the first excited state of <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math>, respectively.
id cern-2836035
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28360352023-10-20T02:29:47Zdoi:10.1103/PhysRevC.106.034325http://cds.cern.ch/record/2836035engKiss, OrielGrossi, MicheleLougovski, PavelSanchez, FedericoVallecorsa, SofiaPapenbrock, ThomasQuantum computing of the $^6$Li nucleus via ordered unitary coupled clusternucl-thNuclear Physics - TheoryThe variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of quantum many-body systems. A key component of the algorithm and an active research area is the construction of a parametrized trial wave function—a so-called variational ansatz. The wave function parametrization should be expressive enough, i.e., represent the true eigenstate of a quantum system for some choice of parameter values. On the other hand, it should be trainable, i.e., the number of parameters should not grow exponentially with the size of the system. Here, we apply VQE to the problem of finding ground and excited state energies of the odd-odd nucleus <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math>. We study the effects of ordering fermionic excitation operators in the unitary coupled clusters ansatz on the VQE algorithm convergence by using only operators preserving the <math><msub><mi>J</mi><mi>z</mi></msub></math> quantum number. The accuracy is improved by two orders of magnitude in the case of descending order. We first compute optimal ansatz parameter values using a classical state-vector simulator with arbitrary measurement accuracy and then use those values to evaluate energy eigenstates of <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math> on a superconducting quantum chip from IBM. We post-process the results by using error mitigation techniques and are able to reproduce the exact energy with an error of <math><mrow><mn>3.8</mn><mo>%</mo></mrow></math> and <math><mrow><mn>0.1</mn><mo>%</mo></mrow></math> for the ground state and for the first excited state of <math><mmultiscripts><mi>Li</mi><mprescripts/><none/><mn>6</mn></mmultiscripts></math>, respectively.The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of quantum many-body systems. A key component of the algorithm and an active research area is the construction of a parametrized trial wavefunction -- a so called variational ansatz. The wavefunction parametrization should be expressive enough, i.e. represent the true eigenstate of a quantum system for some choice of parameter values. On the other hand, it should be trainable, i.e. the number of parameters should not grow exponentially with the size of the system. Here, we apply VQE to the problem of finding ground and excited state energies of the odd-odd nucleus $^6$Li. We study the effects of ordering fermionic excitation operators in the unitary coupled clusters ansatz on the VQE algorithm convergence by using only operators preserving the $J_z$ quantum number. The accuracy is improved by two order of magnitude in the case of descending order. We first compute optimal ansatz parameter values using a classical state-vector simulator with arbitrary measurement accuracy and then use those values to evaluate energy eigenstates of $^6$Li on a superconducting quantum chip from IBM. We post-process the results by using error mitigation techniques and are able to reproduce the exact energy with an error of 3.8% and 0.1% for the ground state and for the first excited state of $^6$Li, respectively.arXiv:2205.00864oai:cds.cern.ch:28360352022-05-02
spellingShingle nucl-th
Nuclear Physics - Theory
Kiss, Oriel
Grossi, Michele
Lougovski, Pavel
Sanchez, Federico
Vallecorsa, Sofia
Papenbrock, Thomas
Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title_full Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title_fullStr Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title_full_unstemmed Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title_short Quantum computing of the $^6$Li nucleus via ordered unitary coupled cluster
title_sort quantum computing of the $^6$li nucleus via ordered unitary coupled cluster
topic nucl-th
Nuclear Physics - Theory
url https://dx.doi.org/10.1103/PhysRevC.106.034325
http://cds.cern.ch/record/2836035
work_keys_str_mv AT kissoriel quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster
AT grossimichele quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster
AT lougovskipavel quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster
AT sanchezfederico quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster
AT vallecorsasofia quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster
AT papenbrockthomas quantumcomputingofthe6linucleusviaorderedunitarycoupledcluster