Cargando…
Dual-Tasks Siamese Transformer Framework for Building Damage Assessment
Accurate and fine-grained information about the extent of damage to buildings is essential for humanitarian relief and disaster response. However, as the most commonly used architecture in remote sensing interpretation tasks, Convolutional Neural Networks (CNNs) have limited ability to model the non...
Autores principales: | Chen, Hongruixuan, Nemni, Edoardo, Vallecorsa, Sofia, Li, Xi, Wu, Chen, Bromley, Lars |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Acceso en línea: | https://dx.doi.org/10.1109/IGARSS46834.2022.9883139 http://cds.cern.ch/record/2836352 |
Ejemplares similares
-
Building a Framework for a Dual Task Taxonomy
por: McIsaac, Tara L., et al.
Publicado: (2015) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery
por: Nemni, Edoardo, et al.
Publicado: (2020) -
Kinship identification using age transformation and Siamese network
por: Abbas, Arshad, et al.
Publicado: (2022) -
A Siamese Vision Transformer for Bearings Fault Diagnosis
por: He, Qiuchen, et al.
Publicado: (2022)