Cargando…
Optimization of ttH¯ Signal and Background Separation Using Machine Learning in the 2lSS1tau Channel
Machine learning techniques have proven the potential to improve the separation of signal and background events in High Energy Physics (HEP) data. This study focuses on the optimization of the ttH¯ production measurement in the analysis channel with two same electrically charged light leptons and on...
Autor principal: | Konig, Severin |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2836425 |
Ejemplares similares
-
ttH multilepton: background estimation
por: Angelidakis, Stylianos
Publicado: (2018) -
Machine Learning Classification of ttH Events at the ATLAS Experiment
por: Konig, Severin
Publicado: (2022) -
Study of ttbb and ttW background modelling for ttH analyses
por: The ATLAS collaboration
Publicado: (2022) -
ttH at the LHC
por: Madaffari, Daniele
Publicado: (2018) -
Optimization of tbH$^+$ Signal and Background Separation Using Machine Learning in the 2lSS1tau Channel, Comparison of Limit Setting Techniques and Signal Injection Studies - Summer Student Report
por: Duser, Niklas
Publicado: (2022)