Cargando…
Machine Learning approach for the search of heavy diboson resonances in semi-leptonic final state at $\sqrt{s}$= 13 TeV with the ATLAS detector
A Recurrent Neural Network-based approach has been adopted for the classification of the production mechanisms in the search of heavy resonances decaying in two bosons. The search is performed using proton-proton collision data recorded with the ATLAS detector from 2015 to 2018. The investigated fin...
Autor principal: | Auricchio, S |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1393/ncc/i2022-22092-9 http://cds.cern.ch/record/2837861 |
Ejemplares similares
-
Search for heavy diboson resonances in semi-leptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
por: Xu, Zhongyukun
Publicado: (2020) -
Searches for heavy diboson resonances in semi--leptonic final states in pp collisions at 13 TeV with the ATLAS detector
por: Xu, Zhongyukun
Publicado: (2021) -
A search for new diboson resonances in the boosted semi-leptonic final state at $\sqrt{s}=13$ TeV with the ATLAS detector
por: Carbone, Ryne Michael
Publicado: (2017) -
Searches for Heavy Diboson Resonances at $\sqrt{s}$ = 13 TeV with the ATLAS Detector
por: Sogaard, Andreas
Publicado: (2016) -
Searches for Heavy Diboson Resonances at $\sqrt{s} = 13~\mathrm{TeV}$ with the ATLAS Detector
por: Sogaard, Andreas
Publicado: (2016)