Cargando…

Development of novel single-die hybridisation processes for small-pitch pixel detectors

Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R&D phase, especially for small-scale applications, such interconnect technologies need to be suitable for the assemb...

Descripción completa

Detalles Bibliográficos
Autores principales: Svihra, Peter, Braach, Justus, Buschmann, Eric, Dannheim, Dominik, Dort, Katharina, Fritzsch, Thomas, Kristiansen, H, Rothermund, M, Schmidt, Janis Viktor, Vicente Barreto Pinto, Mateus, Williams, Morag Jean
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1748-0221/18/03/C03008
http://cds.cern.ch/record/2838845
Descripción
Sumario:Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R&D phase, especially for small-scale applications, such interconnect technologies need to be suitable for the assembly of single dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D programme and the AIDAinnova collaboration, innovative hybridisation concepts targeting vertex-detector applications at future colliders are under development. Recent results of two novel interconnect methods for pixel pitches of 25 µm and 55 µm are presented in this contribution – an industrial fine-pitch SnAg solder bump-bonding process adapted to single-die processing using support wafers, as well as a newly developed in-house single-die interconnection process based on Anisotropic Conductive Film (ACF). The fine-pitch bump-bonding process is qualified with hybrid assemblies from a recent bonding campaign at Frauenhofer IZM. Individual CLICpix2 ASICs with 25 µm pixel pitch were bump-bonded to active-edge silicon sensors with thicknesses ranging from 50 µm to 130 µm. The device characterisation was conducted in the laboratory as well as during a beam test campaign at the CERN SPS beam-line, demonstrating an interconnect yield of about 99.7%.