Cargando…
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
In the field of High Energy Physics (HEP), simulating the interaction of particle detector materials is a compute-intensive task, that currently uses 50% of the computing resources globally available as part of the Worldwide LCH Computing Grid (WLCG). Since some level of approximation is acceptable,...
Autores principales: | Vallecorsa, Sofia, Moise, Diana, Carminati, Federico, Khattak, Gul Rukh |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/hipc.2018.00026 http://cds.cern.ch/record/2838905 |
Ejemplares similares
-
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
por: Hesam, Ahmad, et al.
Publicado: (2019) -
Distributed Training of Generative Adversarial Networks for Fast Simulation
por: Vallecorsa, Sofia, et al.
Publicado: (2019) -
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018) -
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021)