Cargando…
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Detector
The reconstruction and calibration of hadronic final states in the ATLAS detector at the LHC present complex experimental challenges. For isolated pions in particular, classifying $\pi^0$ versus $\pi^{\pm}$ and calibrating pion energy deposits in the ATLAS calorimeters are key steps in the hadronic...
Autor principal: | Portillo Quintero, Dilia Maria |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.414.1076 http://cds.cern.ch/record/2839615 |
Ejemplares similares
-
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Detector
por: Portillo Quintero, Dilia Maria
Publicado: (2022) -
Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Experiment
por: The ATLAS collaboration
Publicado: (2022) -
Object-based missing transverse momentum significance in the ATLAS detector
por: Portillo Quintero, Dilia Maria
Publicado: (2018) -
Deep Learning for Pion Identification and Energy Calibration with the ATLAS Detector
por: The ATLAS collaboration
Publicado: (2020) -
Search for Dark Matter Produced in Association with a Higgs Boson Decaying to a pair of bottom quarks with the ATLAS Detector
por: Portillo Quintero, Dilia Maria
Publicado: (2019)