Cargando…
An intelligent Data Delivery Service for and beyond the ATLAS experiment
The intelligent Data Delivery Service (iDDS) has been developed to cope with the huge increase of computing and storage resource usage in the coming LHC data taking. It has been designed to intelligently orchestrate workflows and data management systems, decoupling data pre-processing, delivery, and...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.414.0218 http://cds.cern.ch/record/2839914 |
Sumario: | The intelligent Data Delivery Service (iDDS) has been developed to cope with the huge increase of computing and storage resource usage in the coming LHC data taking. It has been designed to intelligently orchestrate workflows and data management systems, decoupling data pre-processing, delivery, and primary processing in large scale workflows. It is an experiment-agnostic service that has been deployed to serve data carousel (orchestrating efficient processing of tape-resident data), machine learning hyperparameter optimization, active learning, and other complex multi-stage workflows defined via DAG (Directed Acyclic Graph), CWL (Common Workflow Language) and other descriptions, including a growing number of analysis workflows. We will at first introduce some deployed use cases in a summary. Then we will focus on new improvements and use cases under developments in ATLAS, Rubin Observatory and sPHENIX, together with future efforts. |
---|