Cargando…
Supervised Machine Learning for Local Coupling Sources Detection in the LHC
Local interaction region (IR) linear coupling in the LHC has been shown to have a negative impact on beam size and luminosity, making its accurate correction for Run 3 and beyond a necessity. In view of determining corrections, supervised machine learning has been applied to the detection of linear...
Autores principales: | Soubelet, Felix, Apsimon, Oznur, Persson, Tobias, Tomás García, Rogelio, Welsch, Carsten |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-WEPOPT008 http://cds.cern.ch/record/2839968 |
Ejemplares similares
-
First Interaction Region Local Coupling Corrections in the LHC Run 3
por: Soubelet, Felix, et al.
Publicado: (2022) -
Prospect for Interaction Region Local Coupling Correction in the LHC Run 3
por: Soubelet, Felix, et al.
Publicado: (2021) -
Rigid waist shift: A new method for local coupling corrections in the LHC interaction regions
por: Soubelet, Felix, et al.
Publicado: (2023) -
Simulations of Sextupolar Contribution to Amplitude Detuning in the LHC
por: Soubelet, Felix Pol Gaston, et al.
Publicado: (2021) -
Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning
por: Fol, Elena, et al.
Publicado: (2022)