Cargando…
A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circ...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/5.0089182 http://cds.cern.ch/record/2839973 |
Sumario: | We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as an LC-circuit-based haloscope detector to search for the conversion of axion-like dark matter to radio-frequency photons. This new development increases the sensitive detection bandwidth of our axion haloscope by a factor of ≈1000. |
---|