Cargando…
Affine Lie algebra symmetry of sine-Gordon theory at reflectionless points
The quantum affine symmetry of the sine-Gordon theory at q^2 = 1, which occurs at the reflectionless points, is studied. Conserved currents that correspond to the closure of simple root generators are considered, and shown to be local. We argue that they satisfy the affine sl(2) algebra. Examples of...
Autores principales: | LeClair, Andre, Nemeschansky, Dennis |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217732396000163 http://cds.cern.ch/record/284051 |
Ejemplares similares
-
Hidden Virasoro Symmetry of (Soliton Solutions of) the Sine Gordon Theory
por: Fioravanti, D, et al.
Publicado: (2000) -
Lagrangian formulation of symmetric space sine-Gordon models
por: Bakas, Ioannis, et al.
Publicado: (1995) -
Toward the correlation functions in topological N=2 sine-Gordon model
por: Rashkov, R C, et al.
Publicado: (1995) -
Metastable stationary solutions of the radial $d$ dimensional Sine-Gordon model
por: Piette, B M A G, et al.
Publicado: (1997) -
Methods of the theory of Sine-Gordon equation and the Voss surfaces
por: Babich, M V
Publicado: (1996)