Cargando…
A full detector description using neural network driven simulation
The abundance of data arriving in the new runs of the Large Hadron Collider creates tough requirements for the amount of necessary simulated events and thus for the speed of generating such events. Current approaches can suffer from long generation time and lack of important storage resources to pre...
Autores principales: | Ratnikov, Fedor, Rogachev, Alexander, Mokhnenko, Sergey, Maevskiy, Artem, Derkach, Denis, Davis, Adam, Kazeev, Nikita, Anderlini, Lucio, Barbetti, Matteo, Siddi, Benedetto Gianluca |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2022.167591 http://cds.cern.ch/record/2841209 |
Ejemplares similares
-
Towards Reliable Neural Generative Modeling of Detectors
por: Anderlini, Lucio, et al.
Publicado: (2023) -
Lamarr: the ultra-fast simulation option for the LHCb experiment
por: Anderlini, Lucio, et al.
Publicado: (2022) -
The LHCb ultra-fast simulation option, Lamarr: design and validation
por: Anderlini, Lucio, et al.
Publicado: (2023) -
Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
por: Maevskiy, Artem, et al.
Publicado: (2019) -
Machine-Learning-based global particle-identification algorithms at the LHCb experiment
por: Derkach, Denis, et al.
Publicado: (2018)