Cargando…
Evaluating generative models in high energy physics
There has been a recent explosion in research into machine-learning-based generative modeling to tackle computational challenges for simulations in high energy physics (HEP). In order to use such alternative simulators in practice, we need well-defined metrics to compare different generative models...
Autores principales: | Kansal, Raghav, Li, Anni, Duarte, Javier, Chernyavskaya, Nadezda, Pierini, Maurizio, Orzari, Breno, Tomei, Thiago |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.107.076017 http://cds.cern.ch/record/2841787 |
Ejemplares similares
-
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020)