Cargando…
Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC using machine learning techniques
The studies related to heavy-ion collisions at the Large Hadron Collider (LHC) at CERN, Switzerland and Relativistic Heavy Ion Collider (RHIC) at BNL, USA have revealed the formation of a dense and hot, deconfined state of matter known as the quark-gluon plasma (QGP). Presently, machine learning (ML...
Autores principales: | Mallick, Neelkamal, Tripathy, Sushanta, Mishra, Aditya Nath, Deb, Suman, Sahoo, Raghunath |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2841804 |
Ejemplares similares
-
Estimation of Impact Parameter and Transverse Spherocity in heavy-ion collisions at the LHC energies using Machine Learning
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Implementation of machine learning techniques to predict impact parameter and transverse spherocity in heavy-ion collisions at the LHC
por: Mishra, Aditya Nath, et al.
Publicado: (2021) -
Transverse spherocity dependence of azimuthal anisotropy in heavy-ion collisions at the LHC using a multi-phase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Investigating radial-flow-like effects via pseudorapidity and transverse spherocity dependence of particle production in pp collisions at the LHC
por: R, Aswathy Menon K., et al.
Publicado: (2023) -
Global properties in O+O collisions at $\sqrt{s_{NN}}= 7 $ TeV using a multi-phase transport model
por: Behera, Debadatta, et al.
Publicado: (2022)