Cargando…
Status of Layout Studies for Fixed-Target Experiments in Alice Based on Crystal-Assisted Halo Splitting
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is the world largest and most powerful particle accelerator colliding beams of protons and lead ions at energies up to 7 TeV and 2.76 TeV, respectively. ALICE is one of the detector experiments optimised for hea...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-HB2021-MOP26 http://cds.cern.ch/record/2841812 |
Sumario: | The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is the world largest and most powerful particle accelerator colliding beams of protons and lead ions at energies up to 7 TeV and 2.76 TeV, respectively. ALICE is one of the detector experiments optimised for heavy-ion collisions. A fixed-target experiment in ALICE is considered to collide a portion of the beam halo split by means of a bent crystal with an internal target placed a few meters upstream of the detector. Fixed-target collisions offer many physics opportunities related to hadronic matter and the quark-gluon plasma to extend the research potential of the CERN accelerator complex. This paper summarises our progress in preparing the fixed-target layout consisting of crystal assemblies, a target and downstream absorbers. We discuss the conceptual integration of these elements within the LHC ring, impact on ring losses, conditions for a parasitic operation and expected performance in terms of particle flux on target. |
---|