Cargando…

PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP

<!--HTML--><p><span style="color:rgb(0,0,0);"><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Helvetica;font-size:13px;font-style:normal;font-variant-caps:normal;fon...

Descripción completa

Detalles Bibliográficos
Autor principal: Kagan, Michael
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:http://cds.cern.ch/record/2842460
_version_ 1780976240306421760
author Kagan, Michael
author_facet Kagan, Michael
author_sort Kagan, Michael
collection CERN
description <!--HTML--><p><span style="color:rgb(0,0,0);"><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Helvetica;font-size:13px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">Understanding uncertainties is at the core of data analysis in High Energy Collider Physics. As Machine Learning is rapidly becoming used across the collider physics data analysis pipeline, the High Energy Physics (HEP) community must understand when and what kinds of uncertainties are needed on the predictions of these ML models. At the same time, Uncertainty Quantification is a quickly growing and important topic in ML. In this seminar, we will discuss the connections between uncertainties in HEP and in ML, and progress towards developing and understanding uncertainty quantification for ML in HEP data analysis.&nbsp;</span></span></p><p><span style="color:rgb(0,0,0);"><i><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Helvetica;font-size:13px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">Michael Kagan is a Staff Scientist at SLAC National Accelerator Laboratory. &nbsp;His research focuses on studying the properties of the Higgs Boson on the ATLAS Experiment at the LHC, and on developing and applying machine learning methods in high energy physics. &nbsp;Michael received his Ph. D. in physics from Harvard University, and his B.S. in physics and mathematics from the University of Michigan.</span></i></span></p>
id cern-2842460
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28424602022-11-29T19:21:26Zhttp://cds.cern.ch/record/2842460engKagan, MichaelPHYSTAT seminar: On relating Uncertainties in Machine Learning and HEPPHYSTAT seminar: On relating Uncertainties in Machine Learning and HEPEP-IT Data Science Seminars<!--HTML--><p><span style="color:rgb(0,0,0);"><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Helvetica;font-size:13px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">Understanding uncertainties is at the core of data analysis in High Energy Collider Physics. As Machine Learning is rapidly becoming used across the collider physics data analysis pipeline, the High Energy Physics (HEP) community must understand when and what kinds of uncertainties are needed on the predictions of these ML models. At the same time, Uncertainty Quantification is a quickly growing and important topic in ML. In this seminar, we will discuss the connections between uncertainties in HEP and in ML, and progress towards developing and understanding uncertainty quantification for ML in HEP data analysis.&nbsp;</span></span></p><p><span style="color:rgb(0,0,0);"><i><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Helvetica;font-size:13px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">Michael Kagan is a Staff Scientist at SLAC National Accelerator Laboratory. &nbsp;His research focuses on studying the properties of the Higgs Boson on the ATLAS Experiment at the LHC, and on developing and applying machine learning methods in high energy physics. &nbsp;Michael received his Ph. D. in physics from Harvard University, and his B.S. in physics and mathematics from the University of Michigan.</span></i></span></p>oai:cds.cern.ch:28424602022
spellingShingle EP-IT Data Science Seminars
Kagan, Michael
PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title_full PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title_fullStr PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title_full_unstemmed PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title_short PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP
title_sort phystat seminar: on relating uncertainties in machine learning and hep
topic EP-IT Data Science Seminars
url http://cds.cern.ch/record/2842460
work_keys_str_mv AT kaganmichael phystatseminaronrelatinguncertaintiesinmachinelearningandhep