Cargando…
Improving Parametric Neural Networks for High-Energy Physics (and Beyond)
Signal-background classification is a central problem in High-Energy Physics (HEP), that plays a major role for the discovery of new fundamental particles. A recent method -- the Parametric Neural Network (pNN) -- leverages multiple signal mass hypotheses as an additional input feature to effectivel...
Autores principales: | Anzalone, Luca, Diotalevi, Tommaso, Bonacorsi, Daniele |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/ac917c http://cds.cern.ch/record/2842568 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Triggering Dark Showers with Conditional Dual Auto-Encoders
por: Anzalone, Luca, et al.
Publicado: (2023) -
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics
por: Migliorini, Matteo, et al.
Publicado: (2019)