Cargando…
Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation
Smart healthcare relies on artificial intelligence (AI) functions for learning and analysis of patient data. Since large and diverse datasets for training of Machine Learning (ML) models can rarely be found in individual medical centers, classical centralized AI requires moving privacy-sensitive dat...
Autores principales: | Camajori Tedeschini, Bernardo, Savazzi, Stefano, Stoklasa, Roman, Barbieri, Luca, Stathopoulos, Ioannis, Nicoli, Monica, Serio, Luigi |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/access.2022.3141913 http://cds.cern.ch/record/2842572 |
Ejemplares similares
-
Detecting model misconducts in decentralized healthcare federated learning
por: Kuo, Tsung-Ting, et al.
Publicado: (2021) -
Author Correction: A feasibility study of 5G positioning with current cellular network deployment
por: Camajori Tedeschini, Bernardo, et al.
Publicado: (2023) -
A feasibility study of 5G positioning with current cellular network deployment
por: Camajori Tedeschini, Bernardo, et al.
Publicado: (2023) -
Advanced healthcare materials
por: Tiwari, Ashutosh, et al.
Publicado: (2014) -
Leading reliable healthcare
por: Abdulmohsen Al Knawy, Bandar
Publicado: (2017)