Cargando…
Loss concentration and evacuation by mini-wire-septa from circular machines for spallation neutron sources
Efficient loss management is crucial in high-intensity circular machines like neutron sources, and those using superconducting magnets. Collimator systems have been designed or are under intensive study [1]. The common problem of collimation is the outscattering from the collimator faces which are m...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/284272 |
Sumario: | Efficient loss management is crucial in high-intensity circular machines like neutron sources, and those using superconducting magnets. Collimator systems have been designed or are under intensive study [1]. The common problem of collimation is the outscattering from the collimator faces which are most frequently hit at shallow depth. In this situation high collection efficiency can only be achieved by two-or-more-stage, double-jaw, systems requiring betatron phase advances approaching 2p. As the outscattering is isotropic, both transverse planes are affected and the system layout becomes a two-dimensional problem. Any convincing single-stage collimation system would be simpler to operate and is likely to be less expensive. The possible physical evacuation of the lost beam towards a remote dump can drastically reduce the radioactivity level in the tunnel. Moreover, fitting a two-stage system into an existing machine is difficult and in general not very promising. In this situation a wire septum may be the only satisfactory solution. |
---|