Cargando…
Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative mod...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2842857 |
_version_ | 1780976266500898816 |
---|---|
author | Di Bello, Francesco Armando Dreyer, Etienne Ganguly, Sanmay Gross, Eilam Heinrich, Lukas Kado, Marumi Kakati, Nilotpal Shlomi, Jonathan Soybelman, Nathalie |
author_facet | Di Bello, Francesco Armando Dreyer, Etienne Ganguly, Sanmay Gross, Eilam Heinrich, Lukas Kado, Marumi Kakati, Nilotpal Shlomi, Jonathan Soybelman, Nathalie |
author_sort | Di Bello, Francesco Armando |
collection | CERN |
description | The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines. |
id | cern-2842857 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28428572023-09-27T08:00:23Zhttp://cds.cern.ch/record/2842857engDi Bello, Francesco ArmandoDreyer, EtienneGanguly, SanmayGross, EilamHeinrich, LukasKado, MarumiKakati, NilotpalShlomi, JonathanSoybelman, NathalieConditional Generative Modelling of Reconstructed Particles at Collider Experimentshep-exParticle Physics - ExperimentThe simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.arXiv:2211.06406oai:cds.cern.ch:28428572022-11-11 |
spellingShingle | hep-ex Particle Physics - Experiment Di Bello, Francesco Armando Dreyer, Etienne Ganguly, Sanmay Gross, Eilam Heinrich, Lukas Kado, Marumi Kakati, Nilotpal Shlomi, Jonathan Soybelman, Nathalie Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title | Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title_full | Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title_fullStr | Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title_full_unstemmed | Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title_short | Conditional Generative Modelling of Reconstructed Particles at Collider Experiments |
title_sort | conditional generative modelling of reconstructed particles at collider experiments |
topic | hep-ex Particle Physics - Experiment |
url | http://cds.cern.ch/record/2842857 |
work_keys_str_mv | AT dibellofrancescoarmando conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT dreyeretienne conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT gangulysanmay conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT grosseilam conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT heinrichlukas conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT kadomarumi conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT kakatinilotpal conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT shlomijonathan conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments AT soybelmannathalie conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments |