Cargando…

Conditional Generative Modelling of Reconstructed Particles at Collider Experiments

The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Bello, Francesco Armando, Dreyer, Etienne, Ganguly, Sanmay, Gross, Eilam, Heinrich, Lukas, Kado, Marumi, Kakati, Nilotpal, Shlomi, Jonathan, Soybelman, Nathalie
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:http://cds.cern.ch/record/2842857
_version_ 1780976266500898816
author Di Bello, Francesco Armando
Dreyer, Etienne
Ganguly, Sanmay
Gross, Eilam
Heinrich, Lukas
Kado, Marumi
Kakati, Nilotpal
Shlomi, Jonathan
Soybelman, Nathalie
author_facet Di Bello, Francesco Armando
Dreyer, Etienne
Ganguly, Sanmay
Gross, Eilam
Heinrich, Lukas
Kado, Marumi
Kakati, Nilotpal
Shlomi, Jonathan
Soybelman, Nathalie
author_sort Di Bello, Francesco Armando
collection CERN
description The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.
id cern-2842857
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28428572023-09-27T08:00:23Zhttp://cds.cern.ch/record/2842857engDi Bello, Francesco ArmandoDreyer, EtienneGanguly, SanmayGross, EilamHeinrich, LukasKado, MarumiKakati, NilotpalShlomi, JonathanSoybelman, NathalieConditional Generative Modelling of Reconstructed Particles at Collider Experimentshep-exParticle Physics - ExperimentThe simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the Large Hadron Collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.arXiv:2211.06406oai:cds.cern.ch:28428572022-11-11
spellingShingle hep-ex
Particle Physics - Experiment
Di Bello, Francesco Armando
Dreyer, Etienne
Ganguly, Sanmay
Gross, Eilam
Heinrich, Lukas
Kado, Marumi
Kakati, Nilotpal
Shlomi, Jonathan
Soybelman, Nathalie
Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title_full Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title_fullStr Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title_full_unstemmed Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title_short Conditional Generative Modelling of Reconstructed Particles at Collider Experiments
title_sort conditional generative modelling of reconstructed particles at collider experiments
topic hep-ex
Particle Physics - Experiment
url http://cds.cern.ch/record/2842857
work_keys_str_mv AT dibellofrancescoarmando conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT dreyeretienne conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT gangulysanmay conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT grosseilam conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT heinrichlukas conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT kadomarumi conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT kakatinilotpal conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT shlomijonathan conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments
AT soybelmannathalie conditionalgenerativemodellingofreconstructedparticlesatcolliderexperiments