Cargando…
Optimization of tbH$^+$ Signal and Background Separation Using Machine Learning in the 2lSS1tau Channel, Comparison of Limit Setting Techniques and Signal Injection Studies - Summer Student Report
Machine Learning techniques have proven the potential to improve the separation of signal and background events in High Energy Physics (HEP) data. This study focuses on the optimization of the tbH$^+$ search sensitivity in the analysis channel with two same electrically charged light leptons and on...
Autor principal: | Duser, Niklas |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2843046 |
Ejemplares similares
-
Search for tbH$^+(\tau\tau)$ with Performance Optimisation for Signal and Background Separation Using Machine Learning with ATLAS Data
por: Rames, Martin
Publicado: (2023) -
Optimization of ttH¯ Signal and Background Separation Using Machine Learning in the 2lSS1tau Channel
por: Konig, Severin
Publicado: (2022) -
The ATLAS discovery potential for a heavy charged Higgs boson in $gg \to tbH^{+-}$ with $H^{+-} \to tb$
por: Assamagan, Ketevi A, et al.
Publicado: (2004) -
The ATLAS discovery potential for a heavy charged Higgs boson in gg->tbH^{+-} with H^{+-}->tb
por: Assamagan, Ketevi A, et al.
Publicado: (2004) -
Background Measurements in LSS 5
por: Bätzner, K, et al.
Publicado: (1977)