Cargando…

Fishnet Integrals from Integrability and Geometry

<!--HTML--><div style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);color:rgb(0, 0, 0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;orphans:auto;text-align:start;text-dec...

Descripción completa

Detalles Bibliográficos
Autor principal: Loebbert, Florian
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:http://cds.cern.ch/record/2843310
_version_ 1780976296541552640
author Loebbert, Florian
author_facet Loebbert, Florian
author_sort Loebbert, Florian
collection CERN
description <!--HTML--><div style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);color:rgb(0, 0, 0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;"><div style="color:rgb(0, 0, 0);font-family:&quot;Segoe UI&quot;, Helvetica, Arial, sans-serif;">The computation of Feynman integrals still represents a bottle neck for precision calculations in quantum field theory. Recent progress goes hand in hand with the understanding of new function classes and their mathematical structure. In this talk we discuss the so-called fishnet integrals that represent an infinite family of scalar Feynman integrals featuring integrable structures. In particular we review the Yangian quantum group symmetry of these integrals which extends the conformal spacetime symmetry of the associated fishnet quantum field theories. We then focus on the specific case of fishnets in two spacetime dimensions and argue that these integrals compute the quantum volumes of Calabi-Yau varieties. Here the Yangian provides a convenient tool that yields the Picard-Fuchs differential equations for the Calabi-Yau periods, while the geometry dictates the particular linear combination of periods, which furnishes the Feynman integrals.</div></div><p><br><br>&nbsp;</p>
id cern-2843310
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28433102022-12-08T00:45:11Zhttp://cds.cern.ch/record/2843310engLoebbert, FlorianFishnet Integrals from Integrability and GeometryFishnet Integrals from Integrability and GeometryTH String Theory Seminar<!--HTML--><div style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);color:rgb(0, 0, 0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;"><div style="color:rgb(0, 0, 0);font-family:&quot;Segoe UI&quot;, Helvetica, Arial, sans-serif;">The computation of Feynman integrals still represents a bottle neck for precision calculations in quantum field theory. Recent progress goes hand in hand with the understanding of new function classes and their mathematical structure. In this talk we discuss the so-called fishnet integrals that represent an infinite family of scalar Feynman integrals featuring integrable structures. In particular we review the Yangian quantum group symmetry of these integrals which extends the conformal spacetime symmetry of the associated fishnet quantum field theories. We then focus on the specific case of fishnets in two spacetime dimensions and argue that these integrals compute the quantum volumes of Calabi-Yau varieties. Here the Yangian provides a convenient tool that yields the Picard-Fuchs differential equations for the Calabi-Yau periods, while the geometry dictates the particular linear combination of periods, which furnishes the Feynman integrals.</div></div><p><br><br>&nbsp;</p>oai:cds.cern.ch:28433102022
spellingShingle TH String Theory Seminar
Loebbert, Florian
Fishnet Integrals from Integrability and Geometry
title Fishnet Integrals from Integrability and Geometry
title_full Fishnet Integrals from Integrability and Geometry
title_fullStr Fishnet Integrals from Integrability and Geometry
title_full_unstemmed Fishnet Integrals from Integrability and Geometry
title_short Fishnet Integrals from Integrability and Geometry
title_sort fishnet integrals from integrability and geometry
topic TH String Theory Seminar
url http://cds.cern.ch/record/2843310
work_keys_str_mv AT loebbertflorian fishnetintegralsfromintegrabilityandgeometry