Cargando…
Conditional Progressive Generative Adversarial Network for satellite image generation
Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work,...
Autores principales: | Cardoso, Renato, Vallecorsa, Sofia, Nemni, Edoardo |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2843762 |
Ejemplares similares
-
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
por: Hesam, Ahmad, et al.
Publicado: (2019) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018) -
Hands-on generative adversarial networks with Keras: your guide to implementing next-generation generative adversarial networks
por: Valle, Rafael
Publicado: (2019)