Cargando…
Efficient Search for New Physics using Active Learning in the ATLAS Experiment with RECAST
Searches for new physics and their reinterpretations constrain the parameter space of models with exclusion limits in typically no more than 2 dimensions. However, the relevant theory parameter space often extends into higher dimensions. Limited computing resources for signal process simulations imp...
Autores principales: | Espejo Morales, Irina, Rieck, Patrick, Cranmer, Kyle Stuart, Gadow, Philipp, Von Ahnen, Janik, Heinrich, Lukas Alexander |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2844803 |
Ejemplares similares
-
Efficient search for new physics using Active Learning in the ATLAS Experiment
por: Cranmer, Kyle Stuart, et al.
Publicado: (2023) -
Efficient Search for New Physics Using Active Learning in the ATLAS Experiment
por: Bhatti, Zubair, et al.
Publicado: (2023) -
Efficient search for new physics using Active Learning in the ATLAS Experiment
por: Bhatti, Zubair, et al.
Publicado: (2023) -
Efficient search for new physics using Active Learning in the ATLAS Experiment with RECAST
por: Espejo Morales, Irina
Publicado: (2022) -
Reinterpretation of the ATLAS Search for Displaced Hadronic Jets with the RECAST Framework
por: The ATLAS collaboration
Publicado: (2020)