Cargando…

The scaling of primordial gauge fields

The large-scale magnetic fields arising from the quantum mechanical fluctuations of the hypercharge are investigated when the evolution of the gauge coupling is combined with a sufficiently long inflationary stage. In this framework the travelling waves associated with the quantum mechanical initial...

Descripción completa

Detalles Bibliográficos
Autor principal: Giovannini, Massimo
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.physletb.2023.137967
http://cds.cern.ch/record/2845386
_version_ 1780976546443427840
author Giovannini, Massimo
author_facet Giovannini, Massimo
author_sort Giovannini, Massimo
collection CERN
description The large-scale magnetic fields arising from the quantum mechanical fluctuations of the hypercharge are investigated when the evolution of the gauge coupling is combined with a sufficiently long inflationary stage. In this framework the travelling waves associated with the quantum mechanical initial conditions turn asymptotically into standing waves which are the gauge analog of the Sakharov oscillations. Even if the rate of dilution of the hypermagnetic and hyperelectric fields seems to be superficially smaller than expected from the covariant conservation of the energy-momentum tensor, the standard evolution for wavelengths larger than the Hubble radius fully accounts for this anomalous scaling which is anyway unable to increase the amplitude of the magnetic power spectra after symmetry breaking. An effective amplification of the gauge power spectra may instead occur when the post-inflationary expansion rate is slower than radiation. We stress that the modulations of the gauge power spectra freeze as soon as the relevant wavelengths reenter the Hubble radius and not at the end of inflation. After the Mpc scale crosses the comoving Hubble radius the scaling of the magnetic power spectrum follows from the dominance of the conductivity. From these two observations the late-time values of the magnetic power spectra are accurately computed in the case of a nearly scale-invariant slope and contrasted with the situation where the phases of Sakharov oscillations are not evaluated at horizon crossing but at the end of inflation, i.e. when all the wavelengths relevant for magnetogenesis are still larger than the comoving horizon.
id cern-2845386
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28453862023-06-16T03:46:58Zdoi:10.1016/j.physletb.2023.137967http://cds.cern.ch/record/2845386engGiovannini, MassimoThe scaling of primordial gauge fieldshep-thParticle Physics - Theoryhep-phParticle Physics - Phenomenologygr-qcGeneral Relativity and Cosmologyastro-ph.COAstrophysics and AstronomyThe large-scale magnetic fields arising from the quantum mechanical fluctuations of the hypercharge are investigated when the evolution of the gauge coupling is combined with a sufficiently long inflationary stage. In this framework the travelling waves associated with the quantum mechanical initial conditions turn asymptotically into standing waves which are the gauge analog of the Sakharov oscillations. Even if the rate of dilution of the hypermagnetic and hyperelectric fields seems to be superficially smaller than expected from the covariant conservation of the energy-momentum tensor, the standard evolution for wavelengths larger than the Hubble radius fully accounts for this anomalous scaling which is anyway unable to increase the amplitude of the magnetic power spectra after symmetry breaking. An effective amplification of the gauge power spectra may instead occur when the post-inflationary expansion rate is slower than radiation. We stress that the modulations of the gauge power spectra freeze as soon as the relevant wavelengths reenter the Hubble radius and not at the end of inflation. After the Mpc scale crosses the comoving Hubble radius the scaling of the magnetic power spectrum follows from the dominance of the conductivity. From these two observations the late-time values of the magnetic power spectra are accurately computed in the case of a nearly scale-invariant slope and contrasted with the situation where the phases of Sakharov oscillations are not evaluated at horizon crossing but at the end of inflation, i.e. when all the wavelengths relevant for magnetogenesis are still larger than the comoving horizon.The large-scale magnetic fields arising from the quantum mechanical fluctuations of the hypercharge are investigated when the evolution of the gauge coupling is combined with a sufficiently long inflationary stage. In this framework the travelling waves associated with the quantum mechanical initial conditions turn asymptotically into standing waves which are the gauge analog of the Sakharov oscillations. Even if the rate of dilution of the hypermagnetic and hyperelectric fields seems to be superficially smaller than expected from the covariant conservation of the energy-momentum tensor, the standard evolution for wavelengths larger than the Hubble radius fully accounts for this anomalous scaling which is anyway unable to increase the amplitude of the magnetic power spectra after symmetry breaking. An effective amplification of the gauge power spectra may instead occur when the post-inflationary expansion rate is slower than radiation. We stress that the modulations of the gauge power spectra freeze as soon as the relevant wavelengths reenter the Hubble radius and not at the end of inflation. After the Mpc scale crosses the comoving Hubble radius the scaling of the magnetic power spectrum follows from the dominance of the conductivity. From these two observations the late-time values of the magnetic power spectra are accurately computed in the case of a nearly scale-invariant slope and contrasted with the situation where the phases of Sakharov oscillations are not evaluated at horizon crossing but at the end of inflation, i.e. when all the wavelengths relevant for magnetogenesis are still larger than the comoving horizon.arXiv:2212.07929oai:cds.cern.ch:28453862022-12-15
spellingShingle hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
gr-qc
General Relativity and Cosmology
astro-ph.CO
Astrophysics and Astronomy
Giovannini, Massimo
The scaling of primordial gauge fields
title The scaling of primordial gauge fields
title_full The scaling of primordial gauge fields
title_fullStr The scaling of primordial gauge fields
title_full_unstemmed The scaling of primordial gauge fields
title_short The scaling of primordial gauge fields
title_sort scaling of primordial gauge fields
topic hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
gr-qc
General Relativity and Cosmology
astro-ph.CO
Astrophysics and Astronomy
url https://dx.doi.org/10.1016/j.physletb.2023.137967
http://cds.cern.ch/record/2845386
work_keys_str_mv AT giovanninimassimo thescalingofprimordialgaugefields
AT giovanninimassimo scalingofprimordialgaugefields