Cargando…

Centre-of-Mass Energy in FCC-ee

The Future Circular electron-positron Collider (FCC-ee) is designed for high precision particle physics experiments. This demands a precise knowledge of the beam energies, obtained by resonant depolarization, and from which the center-of-mass energy and possible boosts at all interaction points are...

Descripción completa

Detalles Bibliográficos
Autores principales: Keintzel, Jacqueline, Blondel, Alain, Shatilov, Dmitry, Tomás García, Rogelio, Zimmermann, Frank
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2022-WEPOST007
http://cds.cern.ch/record/2845734
Descripción
Sumario:The Future Circular electron-positron Collider (FCC-ee) is designed for high precision particle physics experiments. This demands a precise knowledge of the beam energies, obtained by resonant depolarization, and from which the center-of-mass energy and possible boosts at all interaction points are then determined. At the highest beam energy mode of 182.5 GeV, the energy loss due to synchrotron radiation is about 10 GeV per revolution. Hence, not only the location of the RF cavities, but also a precise control of the optics and understanding of beam dynamics, are crucial. In the studies presented here, different possible locations of the RF-cavities are considered, when calculating the beam energies over the machine circumference, including energy losses from crossing angles, a non-homogeneous dipole distribution, and an estimate of the beamstrahlung effect at the collision point.