Cargando…
Overview of the Machine Learning and Numerical Optimiser Applications on Beam Transfer Systems for LHC and Its Injectors
Machine learning and numerical optimisation algorithms are getting more and more popular in the accelerator physics community and, thanks to the computing power available, their application in daily operation more likely. In the CERN accelerator complex, and specifically on the beam transfer systems...
Autores principales: | Velotti, Francesco, Barnes, Michael, Carlier, Etienne, Dutheil, Yann, Fraser, Matthew, Goddard, Brennan, Magnin, Nicolas, Ramjiawan, Rebecca, Renner, Elisabeth, Van Trappen, Pieter, Waagaard, Elias |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-TUPOST045 http://cds.cern.ch/record/2845738 |
Ejemplares similares
-
Design of a new SPS injection system via numerical optimisation
por: Waagaard, Elias Walter, et al.
Publicado: (2022) -
Optimization of the FCC-hh Beam Extraction System Regarding Failure Avoidance and Mitigation
por: Renner, Elisabeth, et al.
Publicado: (2018) -
Design and evaluation of injection protection schemes for the FCC-hh injector options
por: Renner, Elisabeth, et al.
Publicado: (2018) -
Optimising the present and designing the future: a novel SPS injection system
por: Waagaard, Elias Walter
Publicado: (2022) -
A Beam-based Measurement of the LHC Beam Dump Kicker Waveform
por: Fraser, Matthew, et al.
Publicado: (2016)