Cargando…
Data Augmentation for Breakdown Prediction in CLIC RF Cavities
One of the primary limitations on the achievable accelerating gradient in normal-conducting accelerator cavities is the occurrence of vacuum arcs, also known as RF breakdowns. A recent study on experimental data from the CLIC XBOX2 test stand at CERN proposes the use of supervised machine learning m...
Autores principales: | Bovbjerg, Holger, Apollonio, Andrea, Cartier-Michaud, Thomas, Millar, William, Obermair, Christoph, Shen, Ming, Tan, Zheng-Hua, Wollmann, Daniel |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-TUPOMS054 http://cds.cern.ch/record/2845799 |
Ejemplares similares
-
Machine Learning Models for Breakdown Prediction in RF Cavities for Accelerators
por: Obermair, Christoph, et al.
Publicado: (2021) -
Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities
por: Obermair, Christoph, et al.
Publicado: (2022) -
CLIC RF Breakdown Prediction
por: Bovbjerg, Holger Severin
Publicado: (2021) -
Spectrometers for RF breakdown studies for CLIC
por: Jacewicz, M, et al.
Publicado: (2016) -
Delayed RF breakdown in a microwave cavity
por: Geschonke, Günther, et al.
Publicado: (2000)