Cargando…

A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC

Understanding and mitigating particle losses in the Large Hadron Collider (LHC) is essential for both machine safety and efficient operation. Abnormal loss distributions are telltale signs of abnormal beam behaviour or incorrect machine configuration. By leveraging the advancements made in the field...

Descripción completa

Detalles Bibliográficos
Autores principales: Coyle, Loic, Blanc, Frederic, Di Croce, Davide, Lechner, Anton, Mirarchi, Daniele, Pieloni, Tatiana, Solfaroli Camillocci, Matteo, Wenninger, Jorg
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2022-TUPOST043
http://cds.cern.ch/record/2845806
_version_ 1780976581660901376
author Coyle, Loic
Blanc, Frederic
Di Croce, Davide
Lechner, Anton
Mirarchi, Daniele
Pieloni, Tatiana
Solfaroli Camillocci, Matteo
Wenninger, Jorg
author_facet Coyle, Loic
Blanc, Frederic
Di Croce, Davide
Lechner, Anton
Mirarchi, Daniele
Pieloni, Tatiana
Solfaroli Camillocci, Matteo
Wenninger, Jorg
author_sort Coyle, Loic
collection CERN
description Understanding and mitigating particle losses in the Large Hadron Collider (LHC) is essential for both machine safety and efficient operation. Abnormal loss distributions are telltale signs of abnormal beam behaviour or incorrect machine configuration. By leveraging the advancements made in the field of Machine Learning, a novel data-driven method of detecting anomalous loss distributions during machine operation has been developed. A neural network anomaly detection model was trained to detect Unidentified Falling Object events using stable beam, Beam Loss Monitor (BLM) data acquired during the operation of the LHC. Data-driven models, such as the one presented, could lead to significant improvements in the autonomous labelling of abnormal loss distributions, ultimately bolstering the ever ongoing effort toward improving the understanding and mitigation of these events.
id cern-2845806
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28458062023-01-11T21:31:22Zdoi:10.18429/JACoW-IPAC2022-TUPOST043http://cds.cern.ch/record/2845806engCoyle, LoicBlanc, FredericDi Croce, DavideLechner, AntonMirarchi, DanielePieloni, TatianaSolfaroli Camillocci, MatteoWenninger, JorgA Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHCAccelerators and Storage RingsUnderstanding and mitigating particle losses in the Large Hadron Collider (LHC) is essential for both machine safety and efficient operation. Abnormal loss distributions are telltale signs of abnormal beam behaviour or incorrect machine configuration. By leveraging the advancements made in the field of Machine Learning, a novel data-driven method of detecting anomalous loss distributions during machine operation has been developed. A neural network anomaly detection model was trained to detect Unidentified Falling Object events using stable beam, Beam Loss Monitor (BLM) data acquired during the operation of the LHC. Data-driven models, such as the one presented, could lead to significant improvements in the autonomous labelling of abnormal loss distributions, ultimately bolstering the ever ongoing effort toward improving the understanding and mitigation of these events.oai:cds.cern.ch:28458062022
spellingShingle Accelerators and Storage Rings
Coyle, Loic
Blanc, Frederic
Di Croce, Davide
Lechner, Anton
Mirarchi, Daniele
Pieloni, Tatiana
Solfaroli Camillocci, Matteo
Wenninger, Jorg
A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title_full A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title_fullStr A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title_full_unstemmed A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title_short A Novel Method for Detecting Unidentified Falling Object Loss Patterns in the LHC
title_sort novel method for detecting unidentified falling object loss patterns in the lhc
topic Accelerators and Storage Rings
url https://dx.doi.org/10.18429/JACoW-IPAC2022-TUPOST043
http://cds.cern.ch/record/2845806
work_keys_str_mv AT coyleloic anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT blancfrederic anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT dicrocedavide anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT lechneranton anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT mirarchidaniele anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT pielonitatiana anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT solfarolicamilloccimatteo anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT wenningerjorg anovelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT coyleloic novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT blancfrederic novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT dicrocedavide novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT lechneranton novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT mirarchidaniele novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT pielonitatiana novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT solfarolicamilloccimatteo novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc
AT wenningerjorg novelmethodfordetectingunidentifiedfallingobjectlosspatternsinthelhc