Cargando…
Explorative Studies of an Innovative Superconducting Gantry
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-THPOMS012 http://cds.cern.ch/record/2845825 |
_version_ | 1780976585924411392 |
---|---|
author | Pullia, M G Donetti, M Felcini, E Frisella, G Mereghetti, A Mirandola, A Pella, A Savazzi, S Dassa, L Karppinen, M Perini, D Tommasini, D Vretenar, M Kurfürst, C Pivi, M T F Stock, M De Matteis, E Mariotto, S Prioli, M Rossi, L Sabbatini, L Vannozzi, A Piacentini, L Ratkus, A Torims, T Vilcans, J Benedetto, E Uberti, S |
author_facet | Pullia, M G Donetti, M Felcini, E Frisella, G Mereghetti, A Mirandola, A Pella, A Savazzi, S Dassa, L Karppinen, M Perini, D Tommasini, D Vretenar, M Kurfürst, C Pivi, M T F Stock, M De Matteis, E Mariotto, S Prioli, M Rossi, L Sabbatini, L Vannozzi, A Piacentini, L Ratkus, A Torims, T Vilcans, J Benedetto, E Uberti, S |
author_sort | Pullia, M G |
collection | CERN |
description | The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D.; We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus. |
id | cern-2845825 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28458252023-01-11T21:31:23Zdoi:10.18429/JACoW-IPAC2022-THPOMS012http://cds.cern.ch/record/2845825engPullia, M GDonetti, MFelcini, EFrisella, GMereghetti, AMirandola, APella, ASavazzi, SDassa, LKarppinen, MPerini, DTommasini, DVretenar, MKurfürst, CPivi, M T FStock, MDe Matteis, EMariotto, SPrioli, MRossi, LSabbatini, LVannozzi, APiacentini, LRatkus, ATorims, TVilcans, JBenedetto, EUberti, SExplorative Studies of an Innovative Superconducting GantryAccelerators and Storage RingsThe Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D.; We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.oai:cds.cern.ch:28458252022 |
spellingShingle | Accelerators and Storage Rings Pullia, M G Donetti, M Felcini, E Frisella, G Mereghetti, A Mirandola, A Pella, A Savazzi, S Dassa, L Karppinen, M Perini, D Tommasini, D Vretenar, M Kurfürst, C Pivi, M T F Stock, M De Matteis, E Mariotto, S Prioli, M Rossi, L Sabbatini, L Vannozzi, A Piacentini, L Ratkus, A Torims, T Vilcans, J Benedetto, E Uberti, S Explorative Studies of an Innovative Superconducting Gantry |
title | Explorative Studies of an Innovative Superconducting Gantry |
title_full | Explorative Studies of an Innovative Superconducting Gantry |
title_fullStr | Explorative Studies of an Innovative Superconducting Gantry |
title_full_unstemmed | Explorative Studies of an Innovative Superconducting Gantry |
title_short | Explorative Studies of an Innovative Superconducting Gantry |
title_sort | explorative studies of an innovative superconducting gantry |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.18429/JACoW-IPAC2022-THPOMS012 http://cds.cern.ch/record/2845825 |
work_keys_str_mv | AT pulliamg explorativestudiesofaninnovativesuperconductinggantry AT donettim explorativestudiesofaninnovativesuperconductinggantry AT felcinie explorativestudiesofaninnovativesuperconductinggantry AT frisellag explorativestudiesofaninnovativesuperconductinggantry AT mereghettia explorativestudiesofaninnovativesuperconductinggantry AT mirandolaa explorativestudiesofaninnovativesuperconductinggantry AT pellaa explorativestudiesofaninnovativesuperconductinggantry AT savazzis explorativestudiesofaninnovativesuperconductinggantry AT dassal explorativestudiesofaninnovativesuperconductinggantry AT karppinenm explorativestudiesofaninnovativesuperconductinggantry AT perinid explorativestudiesofaninnovativesuperconductinggantry AT tommasinid explorativestudiesofaninnovativesuperconductinggantry AT vretenarm explorativestudiesofaninnovativesuperconductinggantry AT kurfurstc explorativestudiesofaninnovativesuperconductinggantry AT pivimtf explorativestudiesofaninnovativesuperconductinggantry AT stockm explorativestudiesofaninnovativesuperconductinggantry AT dematteise explorativestudiesofaninnovativesuperconductinggantry AT mariottos explorativestudiesofaninnovativesuperconductinggantry AT priolim explorativestudiesofaninnovativesuperconductinggantry AT rossil explorativestudiesofaninnovativesuperconductinggantry AT sabbatinil explorativestudiesofaninnovativesuperconductinggantry AT vannozzia explorativestudiesofaninnovativesuperconductinggantry AT piacentinil explorativestudiesofaninnovativesuperconductinggantry AT ratkusa explorativestudiesofaninnovativesuperconductinggantry AT torimst explorativestudiesofaninnovativesuperconductinggantry AT vilcansj explorativestudiesofaninnovativesuperconductinggantry AT benedettoe explorativestudiesofaninnovativesuperconductinggantry AT ubertis explorativestudiesofaninnovativesuperconductinggantry |