Cargando…
Machine Learning-Based Modeling of Muon Beam Ionization Cooling
Surrogate modeling can lead to significant improvements of beam dynamics simulations in terms of computational time and resources. Application of supervised machine learning, using collected simulation data allows to build surrogate models which can estimate beam parameters evolution based on the pr...
Autores principales: | Fol, Elena, Rogers, Chris, Schulte, Daniel |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-WEPOMS046 http://cds.cern.ch/record/2845835 |
Ejemplares similares
-
Automated Design and Optimization of the Final Cooling for a Muon Collider
por: Fol, Elena, et al.
Publicado: (2022) -
The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment
por: Bogomilov, M., et al.
Publicado: (2012) -
Muon ionization cooling experiment
por: Treille, Daniel
Publicado: (2003) -
ICOOL: A Simulation Code for Ionization Cooling of Muon Beams
por: Fernow, R C
Publicado: (1999) -
Progress on Muon Ionization Cooling Demonstration with MICE
por: Jurj, Paul Bogdan, et al.
Publicado: (2020)