Cargando…
Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS
Beams in the SPS for the High Luminosity LHC (HL-LHC) must be stabilized in the longitudinal plane up to an intensity of 2.4·10¹¹ protons per bunch. The fourth harmonic RF system increases Landau damping, and controlled longitudinal emittance blow-up is applied to cope with coupled-bunch instabiliti...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2022-WEPOMS009 http://cds.cern.ch/record/2845854 |
_version_ | 1780976592510517248 |
---|---|
author | Quartullo, Danilo Intelisano, Leandro Karpov, Ivan Papotti, Giulia |
author_facet | Quartullo, Danilo Intelisano, Leandro Karpov, Ivan Papotti, Giulia |
author_sort | Quartullo, Danilo |
collection | CERN |
description | Beams in the SPS for the High Luminosity LHC (HL-LHC) must be stabilized in the longitudinal plane up to an intensity of 2.4·10¹¹ protons per bunch. The fourth harmonic RF system increases Landau damping, and controlled longitudinal emittance blow-up is applied to cope with coupled-bunch instabilities along the ramp and at flat-top. Longitudinal multi-bunch beam dynamics simulations of the SPS cycle were performed starting from realistic bunch distributions, as injected from the PS. The full SPS impedance model was included, as well as the effect of low-level RF (LLRF) feedback for beam-loading compensation. A realistic model of the beam-based LLRF loops was used for the particle tracking studies. Controlled longitudinal emittance blow-up was included by generating bandwidth-limited RF phase noise and by injecting it into the beam phase-loop input, exactly as in hardware. Due to the stringent constraints on particle losses and extracted bunch lengths, particular attention was paid to monitoring these parameters in the simulations, and to determining the best configuration for a stable acceleration of the beam. |
id | cern-2845854 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28458542023-06-07T12:18:07Zdoi:10.18429/JACoW-IPAC2022-WEPOMS009http://cds.cern.ch/record/2845854engQuartullo, DaniloIntelisano, LeandroKarpov, IvanPapotti, GiuliaSimulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPSAccelerators and Storage RingsBeams in the SPS for the High Luminosity LHC (HL-LHC) must be stabilized in the longitudinal plane up to an intensity of 2.4·10¹¹ protons per bunch. The fourth harmonic RF system increases Landau damping, and controlled longitudinal emittance blow-up is applied to cope with coupled-bunch instabilities along the ramp and at flat-top. Longitudinal multi-bunch beam dynamics simulations of the SPS cycle were performed starting from realistic bunch distributions, as injected from the PS. The full SPS impedance model was included, as well as the effect of low-level RF (LLRF) feedback for beam-loading compensation. A realistic model of the beam-based LLRF loops was used for the particle tracking studies. Controlled longitudinal emittance blow-up was included by generating bandwidth-limited RF phase noise and by injecting it into the beam phase-loop input, exactly as in hardware. Due to the stringent constraints on particle losses and extracted bunch lengths, particular attention was paid to monitoring these parameters in the simulations, and to determining the best configuration for a stable acceleration of the beam.oai:cds.cern.ch:28458542022 |
spellingShingle | Accelerators and Storage Rings Quartullo, Danilo Intelisano, Leandro Karpov, Ivan Papotti, Giulia Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title | Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title_full | Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title_fullStr | Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title_full_unstemmed | Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title_short | Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS |
title_sort | simulation studies of longitudinal stability for high-intensity lhc-type beams in the cern sps |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.18429/JACoW-IPAC2022-WEPOMS009 http://cds.cern.ch/record/2845854 |
work_keys_str_mv | AT quartullodanilo simulationstudiesoflongitudinalstabilityforhighintensitylhctypebeamsinthecernsps AT intelisanoleandro simulationstudiesoflongitudinalstabilityforhighintensitylhctypebeamsinthecernsps AT karpovivan simulationstudiesoflongitudinalstabilityforhighintensitylhctypebeamsinthecernsps AT papottigiulia simulationstudiesoflongitudinalstabilityforhighintensitylhctypebeamsinthecernsps |