Cargando…

Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype

A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for...

Descripción completa

Detalles Bibliográficos
Autores principales: Torims, Toms, Cherif, Ahmed, Delerue, Nicolas, Foppa Pedretti, Maurizio, Gruber, Samira, Krogere, Dagnija, Lopez, Elena, Otto, Tauno, Pikurs, Guntis, Pozzi, Mateo, Ratkus, Andris, Thielmann, Michael, Vedani, Maurizio, Vretenar, Maurizio, Wagenblast, Philipp
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2022-TUOXSP3
http://cds.cern.ch/record/2845877
Descripción
Sumario:A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for production with state-of-the-art laser powder bed fusion technology. Geometrical precision and roughness of the critical surfaces were measured. Alt-hough the obtained values were beyond standard RFQ specifications, these first results are promising and con-firmed the feasibility of AM manufactured complex cop-per accelerator cavities. Therefore, further post-processing trials have been conducted with the sample RFQ to im-prove surface roughness. Algorithms for the AM techno-logical processes have also been improved, allowing for higher geometrical precision. This resulted in the design of a full 4-vane RFQ prototype. At the time of the paper submission the full-size RFQ is being manufactured and will undergo through the stringent surface quality meas-urements. This paper is discussing novel technological developments, is providing an evaluation of the obtained surface roughness and geometrical precision as well as outlining the potential post-processing scenarios along with future tests plans.