Cargando…
DeeLeMa: Missing information search with Deep Learning for Mass estimation
We present DeeLeMa, a deep learning network to analyze energies and momenta in particle collisions at high energy colliders, especially DeeLeMa is constructed based on symmetric event topology, and the generated mass distributions show robust peaks at the physical masses after the combinatoric uncer...
Autores principales: | Ban, Kayoung, Kang, Dong Woo, Kim, Tae Geun, Park, Seong Chan, Park, Yeji |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2846004 |
Ejemplares similares
-
Search for Gluinos with the CMS Detector at the LHC
por: Ziebarth, Eva
Publicado: (2008) -
Searching supersymmetry at the LHCb with displaced vertices
por: de Campos, F., et al.
Publicado: (2008) -
A Possibility of Search for New Physics at LHCb
por: Liu, Xiang, et al.
Publicado: (2007) -
Using Tau Polarization for Charged Higgs Boson and SUSY Searches at LHC
por: Guchait, Monoranjan, et al.
Publicado: (2008) -
"Silver" mode for the heavy Higgs search in the presence of a fourth SM family
por: Sultansoy, S., et al.
Publicado: (2007)