Cargando…
Inductor Design Optimization Using FEA Supervised Machine Learning
An optimal inductor design methodology using dimensioning models derived from Finite Element Analysis (FEA) supervised Artificial Neural Networks (ANN) is presented. The efficiency of such trained ANN dimensioning models in terms of compromise between precision and computing time is demonstrated for...
Autores principales: | Cajander, D, Viarouge, I, Viarouge, P, Aguglia, D |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Acceso en línea: | http://cds.cern.ch/record/2846098 |
Ejemplares similares
-
FEA identification of high order generalized equivalent circuits for MF high voltage transformers
por: Candolfi, Sylvain, et al.
Publicado: (2015) -
Finite Element Based Optimal Design Approach for High Voltage Pulse Transformers
por: Aguglia, D, et al.
Publicado: (2014) -
Hybrid Design Optimization of High Voltage Pulse Transformers for Klystron Modulators
por: Sylvain, Candolfi, et al.
Publicado: (2015) -
Hybrid design optimization of high voltage pulse transformers for klystron modulators
por: Candolfi, Sylvain, et al.
Publicado: (2014) -
Efficient Hybrid Optimal Design Method for Power Electronics Converters
por: Cabaleiro Magallanes, Francisco, et al.
Publicado: (2015)